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LEITER TO THE EDITOR 

All quantum group structures on the supergroup GL(1 I 1) 

B A Kupershmidt 
The Universily of Tennessee Space Institute, lbllahoma, TN 37388, USA 

Received 18 September 1992 

Abstract. AI1 quantum gmup structures are found on the supergroup G L ( l I 1 ) .  These 
s w c l u m a r e  dacribed b y h w  two-prameterfamilies, G L q , Q ( l [ l )  and GLh,,h2(111). 
Each family possesses a central mrrlriplicalive quanlum superdetenninanl. which allows 
one to define the qwntum supergroups S L , , Q ( l I l )  and S L h l , h z ( l l  1). 

Quantum analogues of a given classical object are, in general, not unique. When 
the object is a group (or a supergroup), the variety of possible quantum analogues 
is, as a rule, very large. There are two exceptions to the rule when the group is a 
matrix one: the group GL(2), and the supergroup GL(111). In the former case, 
there exist precisely two quantizations of GL(2) which can be restricted to SL(2) 
(by virtue of having the quantum determinant to be central), namely GL,(2) and 
GL,(2)  (Kupershmidt 1992). Let us now look at the supergroup GL(lI1).  

In other words, let us first 
determine all Lie-Poisson structures on the supergroup GL( 1 11). One can show that, 
for the general case of GL(n  I m), all such structures arise as Poisson symmetries of 
a pair of Poisson superplanes, V" Im and ~ n ' m )  say, of opposite Z,-gradings. For 
the case at hand, we have two (1 I 1)-dimensional superplanes, with coordinates which 
we denote ( E ,  e )  and (q, y) respectively. From Z2-dimensional considerations, the 
most general quadratic Poisson brackets on these planes are given by the formulae 

We start off with the quasiclassical description. 

I E > € I  = P l X E  15, €1 = P P Z  ( 1 4  

{Y,d = P3YV (16) 117, 71 = P4Y 2 

where p, ,  . . . , p a  are arbitrary even constants; as usual, latin and greek letters denote 
even and odd elements respectively. nkmg 

as a general element of Mat(1 I l ) ,  we demand that the relations (1) are preserved 

under the action of A4 (by multiplication) on the vectors 
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This requirement uniqucly determines a multiplicative (pre) Poisson structure on 
Mat( 1 11) 

This structure has the following properties: 
(A) The superdeterminant 

sdet(A4) = ( d  - ya-'P)a-' (4) 

is central for all values of the parameters p,,  . . . , p,. 

if the superplane Poisson brackets (1) do, which happens if 
(B) The Poisson brackets (3) on Mat(lI1) satisfy the (graded) Jacobi identities 

PlP ,  = P3P4 = 0. (5) 

Thus, there exist precisely 3 non-isomorphic families of multiplicative Poisson 
structures on Mat( 1 I 1) 

P l = P 3 = 0  

P2 = P4 = 0 

{ p l  = p 4  = 0) isomorphic to { p z  = p3 = 0) .  

(C) The Poisson centre of Mat(1 I 1) is generated by 

for the case (&); sdet(A4) for the case (66) when p ,  + p 3  # 0. I f ,  in addition, 
pl  + p3 = 0, then the Poisson generators are 

for the case (6c) when p ,  = p4 = 0, p,  # 0. I f  p 3  = 0, then the generators are as in 
(74. 

Now let us turn to the quantum picture. 
We start with the case (k), p ,  = p4 = 0. The quantum analogue of formulae (1) 

is 
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The quantum matrix M = (; 2) preserves these relations f l  

up = qPa 
ad = 1(1+ q-')da + f ( 1 -  q - ' ) y P  

dy = y d  - h ( l +  q)@a p2 = 0 
07 = i (4- l  - 1)da - $(q-' + 1)yP 

a y  = ya - h(l  + q)pd 

d p  = qPd 
(9) 

2 

yz = h(az - d'). 

Ordering monomials according to the rule a > d > p > y and using the diamond 
lemma (Bergman 1978) we find that formulae (9) do not have the PBW property for 
q # 1; e.g. 

0 = PPy = $(q-' - + qz)Pda. 

The quantum version of the properly (B) above break down here: it is easy to check 
that the quantum superplane 

xE = q t x  

has the PBW property if 

c2 = hxZ 

h($  - 1) = 0 (10) 

an analogue of formula (9, and this criterion is obviously satisfied by the superplanes 
(8). This is a rare instance of a non-quantizable situation. 

Remark. This example answers in the negative the open problem 1.1 in Drinfel'd 
(1992). of whether every Lie bialgebra can be quantized. Drinfel'd proves that this is 
always possible modulo ( q  - 

Next we consider the case (a), p2  = p4 = 0. Its quantum version is the pair of 
superplanes 

x[  = q-'<x E2 = 0 v 2 = 0  v v =  Qw. (11) 

The PBW criterion (IO) is satisfied for both superplanes. 

M = ( 
The quantum matrix 

:) is a symmetry of (11) iff 

y2 = 0 Y P  = -qQ-'Py y d  = qdy = qay 

da = ad + (Q-' - q)Py.  
P2 = 0 p d  = QdP pa = QaP (12) 

By construction, formulae (12) are multiplicative; we write M E Matq,Q(l 11) for 
brevity. This time the PBW property holds true. Further, the quantum determinant 
sDet(M), given by the sume classical formula (4), is central and multiplicative (i.e. 
group-like). 1 11) and SLq,Q( 1 I 1) 
thereby. For Q = q, these supergroups are known (brrigan er a1 1990) under 

One gets the quantum supergroups GL 
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the name GL,( l [  1); for Q f q, they are discussed in Dabrowski and Wang (1991). 
Finally, using formulae 

sDet(M) = a-'(d - -p- 'P)  = [d-'(a - Pd-'7)]- '  = [ (a  -Pd-'y)d-']-' (13) 

one can show that 

M-' E Mat,-l,g-I(l 11) (15) 

sDet(M-') = [sDet(M)]-'. (16) 

and that 

For Q $ q-I, one also has the following purely quantum formula: 

qda-' - Q-'a-'d 
4 -  Q-' 

sDet( M) = 

In analogy with the case of GL,(l I 1) (Schwenk et a1 1990) one should expect that 

M k  E Matqb,Qk(lIl)  sDet(A.lk) = [sDet(M)lk V k  E 2. (18) 

suppose L = ($ :) is a 2 x 2 Z,-graded even matrix whose elements 
supercommute with those of M .  Define 

Let us now turn to the last, and the most complicated, case (b), p ,  = p ,  = 0. The 
quantum version of a pair of superplanes (1) is 

x t  =Ex t2 = h,x2 q2 = hzy2 YV = V Y  (21) 

where h, and h,, like h ,  In q and In Q before them, are the deformation parameters. 
The PBW criterion (IO) is clearly satisfied. The quantum matrix M = 
preserves the relations (21) if 
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We write M E Mat,,,,,(lIl). These formulae have the following properties: 
(A') The expressions (4) and (13), in the form 

stet,(M) = ( d -  ya-lP)a-' = a-'(d - ya-'P) (234 

and 

stet,(M) = d-'(a - p d - ' y )  = ( a  - ~ d - ' y ) d - '  ( U b )  

are central but not multiplicative, and are no longer inverse to each other. Thus, 
the triangular decomposition methods for defining quantum superdeterminants 
(Kupeishmidt 1990) 

fail here. For the inverse matrix we have formula (14), with stet,( M) substituted in 
place of sDet( M), as well as 

(B') The PBW property holds true for Math,,hz( 1 11); 
(C) The element az - dZ is central, and so are pz and yz. We also have 

[ a ,  Prl = [d ,  Prl = 0 (26) 

so some analogue of formula (70) may hold true also as a quantum version, since. 
[a, d]  = 0; 

(D') We still have to tind a quantum superdeterminant. Recall why the difficulties 
arise only in the Z,-graded case. In the non-Z,-graded situation of linear algebra, 
if A : V + V is a linear operator on a finite-dimensional vector space (or a free 
module), its induced action on h n ( V ) ,  n = dimV, is an operator of multiplication 
by a scalar, since An(V) is onedimensional. This scalar, called the determinant of 
A, is by construction multiplicative. If V is now 2, graded, I' = V, + V,, there 
are no onedimensional analogues of An(V), so there is no analogue of the usual 
determinant. The new animal, sdet(A), the superdeterminant, is a rational function 
of A, and there is no immediately obvious onedimensional module on which the 
sdet(A) acts. However, there exists something very close, and in any case sufficient for 
our purposes. Suppose U C W is a pair of finite-dimensional vector spaces (or free 
modules) such that dim(W/U) = 1, and suppose A : W - W is a linear operator 
for which U is invariant: A( U)  c U. Then A a m  on the one-dimensional space 
W / U ,  hence it acts by multiplication, and one obtains a multiplicative determinant. 
If W = V, + V, is 2,-graded, then, for a basis {ei} of W, we set 

W / U  = ( [n i {e i le i  is odd }][nj{ejlej is even}]-'). (27) 
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For A even, we can reverse the Z,-gradings of the basis {e;} and obtain a second 
version of the superdeterminant. The reader can check that in this way one the gets 
non-quantum formulae (U) and the usual two expressions for the superdeterminant. 
Let us see how this device works in our quantum case. We have, by (2) and (21) 

= (yz + dE)(a+ -t o[)-' = (y  + d[+- ' ) (a  + P[+-')-' 
= (y  + dEx-')(l- u- 'P[z- ' ) (Q + hlPa-'P)-' 
= [(y t da-'phl) + (d  - ya-'P)E+-'] ( a  + hlPa-'P)-' (=4 

and hence we get the first desired candidate for the quantum superdeterminant 

By construction, sDet,(M) is multiplicative. One can check that @-'pa-' is central. 
Hence, sDet,(M) is central as well. Similarly, we have 

--1- - Y v - (77 + dy)-'(av + PY) = ( Y Y - ' ~  + d)-'(ay-'v+ P )  
= (d + h,yd-'y)-'( 1 - yd-'y-'q)(ay-'q + P )  
= ( d  t hZyd-'7')-'[(Q + yd-'P)y-'v + ( P  - yd-'ahZ)l (2%) 

so that we get the second candidate for the quantum superdeterminant 

Again, sDet,(M) is multiplicative by construction. Also, d-'yd-'y can be shown to 
be central. Thus, sDet,(M) is also central. Finally, one can verify that 

sDet,( hf)  sDet,( M) = 1. (30) 

The quantum supergroup SL,,,,,( 1 11) is defined thereby. Here also one should 
except formulae analogous to (U) to hold. 

Remark. In the non-Z,-graded case of 2 x 2 matrices, one has two one-purumefer 
families of quantum groups, GL,(2) and GL,(2) .  The Z,,-graded case is, as we see, 
less rigid: here we have two two-purumefer families, GL,,,(l 11) and GL,,,,,( 1 11). 
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